

Sustainable Tariff: a bridge between citizens, utilities and regulators.

Donato Berardi Michele Tettamanzi Samir Traini ricerche

Rome, December 3rd, 2019

RQ1: Can we build a *sustainable* tariff?

We think so, event if it is challenging!

RQ2: Is *information* a tool that can be used to build a sustainable tariff? **Yes, if is a way to enhance co-construction**

RQ3: Which are the *levers* we can use to build a sustainable tariff, via the provision of *easy, accessible* and *clear information?*

Cost, Satisfaction and Trust

Research Questions: need of a definition

RO1: Can we build a *sustainable* tariff?

laboratorio

ricerche

Research Questions: provision of relevant information

RQ2: Is *information* a tool that can be used to build a sustainable tariff?

laboratorio

ricerche

RQ3: Which are the *levers* we can use to build a sustainable tariff, via the provision of *easy, accessible and clear information?*

Information treatment: pillars and intuition

Pinpointing some results and intuitions

- Information given were:
 - *Clear* in wording
 - *Easy to understand*, i.e. close to daily experience
 - Accessible, automatically provided on screen
 - Neutral
- Information helped respondents (assumptions)
 - Give broader picture, thus "objectivizing" the perception*
 - Educate on duties of water utilities
 - Identify <u>true destination</u> of funding \rightarrow increase trust

*<u>Objective vs Perceived Quality</u>

The effects of information

Participants revise upward their willingness to pay

	EX-ANTE				EX-POST				
	WTP	Affordable cost	High cost	Fully satisfied	Improving scenario	Status Quo	Worsening scenario		
Water loss	4,2%	13%	84%	3%	54%	30%	16%		
Supply interruption	3,7%	15%	62%	23%	31%	50%	19%		
Potability	4,2%	34%	44%	23%	44%	42%	14%		
Sewerage	3,8%	17%	72%	11%	40%	42%	18%		
Depuration	4,3%	17%	69%	14%	48%	38%	14%		
Mean	4%	19%	66%	15%	43%	40%	16%		

Behind the scenes ...

How information affected participants choice

	ex-post						
	Improving scenario	Status Quo	Worsening scenario				
Affordable cost	Coherent	Coherent	Convinced				
	(12%)	(27%)	(27%)				
ey	Disappointed	Satisfied	Coherent				
High cost	(3%)	(4%)	(12%)				
Fully satisfied	Over Satisfied	Coherent	Altruistic				
	(1%)	(9%)	(4%)				

Leverages driving choices: some possible policy?

Model: Multinomial Logit + Marginal Effects

$$\Pr(i) = \frac{\exp(\beta' x_i)}{\sum_{j=1}^{3} \exp(\beta' x_j)}, \forall i in [1,2,3]$$

	Status Quo	Improving	Deterioration	
Status Quo	-0,51%	0,38%	0,10%	
Improving	0,38%	-0,54%	0,16%	
Deterioration	0,10%	0,16%	-0,29%	

Satisfaction	Trust
9,50%	-7,89%
-7,00%	6,20%
-2,00%	1,68%

Gradual increase in cost, would increase adhesion rate

Notice: Assuming linear effects

ricerche

- Easy, clear and accessible information helps in understanding the proposed improvement path, and thus it results in an increased acceptance of the water policy plan
- Cost should increase gradually, always coming with information, so to make citizens aware of the improvement, and finally increase satisfaction
- Improvement should be a "bottom-up" process: there shall be a grater focus on the most *deficient* regions, trying to match perceived and objective quality
- Relationship with citizens shall be put forward, and be sure that is based on trust

Higher satisfaction calls from a *bottom-up* improvement

Notice: Assuming linear effects

Trust as a booster for adhesion rate

Notice: Assuming linear effects

GRAZIE!

mtettamanzi@refricerche.it

Laboratorio REF Ricerche

Via Aurelio Saffi, 12 - Milano

Supremacy of perception

Trust rate: a definition

Do you drink tap water?

	Do you drink tap	No, I don't trust			
Area	water?	local water utility*			
North West	54%	20%			
North East	45%	20%			
Center	50%	26%			
South	42%	34%			
Islands	25%	46%			
Mean	55%	27%			

* Anwers "I think tap water is not safe" "Tap water is not analysed"

No, I don't trust local water utility

back

Knowledge of water utility

back

Objective VS Perceived Quality: the role of *knowledge* (1)

laboratorio

Objective VS Perceived Quality: the role of *knowledge* (2)

The indirect effect in details

KNOWLEDGE INDEX = 1 (LOW)					
		Supply		Sewerage	
	Water loss	interruption	Potability	overflows	Depuration
(intercept)	2.229***	3.225***	3.343***	2.821***	2.925***
Class A	0.605 .	0.196	0.268	0.499*	0.454*
Class B	0.194	.0.225		0.379	0.375 .
Class C	0.05	-0.456	0.057	0.24	0.687*
Class D	0.237		-0.051	0.446	0.321*
Class E	-0.062		-0.057	0.253.	
S.P.		0.504*		1179	
adjusted R ²	0.004	0.02	009	0.004	0.024
Observations	293	293	293	293	293

KNOW FROM NORV 2/ UCH

KNOWLEDGE INDEX = 2 (MEDIUM)

				-		KNOWLEDGE INDEX = 3 (HIGH)					
		Supply		Sewerage				Supply		Sewerage	
	Water loss	interruption	Potability	overflows	Depuration		Water loss	interruntion	Potability	overflows	Denuration
(intercept)	2.278***	3.402***	3.371***	2.769***	3.323***	(intercent)	1 005***	2 /002	2 200***	2 702***	2 01/***
Class A	0.18	0.184	0.036	0.379	-0.103	(intercept)	1.985	3.4552	3.309	2.792	3.014
Class P	0.06	0.09	0 271	0.214	044	Class A	0.39	0.578***	0.636*	0.513 .	0.402 .
Class B	-0.06	-0.08	-0.571	0.514	044	Class B	0.291	0.321	-0.309	0.637	0.397.
Class C	0.102	-0.51*	-0.027	0.473**	0.552*	Class	-0.1	-0.234	0 52**	0.254	0 8/13**
Class D	0.227		0.557**	0.413	0.056		-0.1	-0.234	0.52	0.254	0.045
Class F	-0 11/		0 166	0 100		Class D	-0.07		0.35	0.986*	0.368*
Classie	-0.114		0.100	0.199		Class E	0.015		0.413*	0.399*	
S.P.		0.342.		1321		S P		0 548***			
adjusted R ²	-0.001	0.023	0.011	0.007	0.008		0.000	0.540	0.010	0.045	0.02
Observations	411	411	411	411	411	adjusted R ²	0.008	0.058	0.018	0.015	0.02
	711	711	711	-11	411	Observations	318	318	318	318	318